Nonlocal Response in Infrared Detector with Semiconducting Carbon Nanotubes and Graphdiyne
نویسندگان
چکیده
Semiconducting single-walled carbon nanotubes (s-SWNTs) are regarded as an important candidate for infrared (IR) optical detection due to their excellent intrinsic properties. However, the strong binding energy of excitons in s-SWNTs seriously impedes the development of s-SWNTs IR photodetector. This Communication reports an IR photodetector with highly pure s-SWNTs and γ-graphdiyne. The heterojunctions between the two materials can efficiently separate the photogenerated excitons. In comparison to device fabricated only with s-SWNTs, this IR detector shows a uniform response in the whole channel of the device. The response time is demonstrated to be below 1 ms. The optimal responsivity and detectivity approximately reach 0.4 mA W-1 and 5 × 106 cmHz1/2 W-1, respectively.
منابع مشابه
Longitudinal Magnetic Field Effect on Torsional Vibration of Carbon Nanotubes
Torsional dynamic analysis of carbon nanotubes under the effect of longitudinal magnetic field is carried out in the present study. Torque effect of an axial magnetic field on a carbon nanotube has been defined using Maxwell’s relation. Nonlocal governing equation and boundary conditions for carbon nanotubes are obtained by using Hamilton’s minimum energy principle. Eringen’s nonlocal stress gr...
متن کاملOn the Buckling Response of Axially Pressurized Nanotubes Based on a Novel Nonlocal Beam Theory
In the present study, the buckling analysis of single-walled carbon nanotubes (SWCNT) on the basis of a new refined beam theory is analyzed. The SWCNT is modeled as an elastic beam subjected to unidirectional compressive loads. To achieve this aim, the new proposed beam theory has only one unknown variable which leads to one equation similar to Euler beam theory and is also free from any shear ...
متن کاملNonlocal Flügge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach
In this paper, the stability characteristics of single-walled carbon nanotubes (SWCNTs) under the action of axial load are investigated. To this end, a nonlocal Flügge shell model is developed to accommodate the small length scale effects. The analytical Rayleigh-Ritz method with beam functions is applied to the variational statement derived from the Flügge-type buckling equations. Molecular dy...
متن کاملNonlocal Flügge shell model for the axial buckling of single-walled Carbon nanotubes: An analytical approach
In this paper, the stability characteristics of single-walled carbon nanotubes (SWCNTs) under the action of axial load are investigated. To this end, a nonlocal Flügge shell model is developed to accommodate the small length scale effects. The analytical Rayleigh-Ritz method with beam functions is applied to the variational statement derived from the Flügge-type buckling equations. Molecular dy...
متن کاملThe effect of small scale on the vibrational behavior of single-walled carbon nanotubes with a moving nanoparticle
In this paper, free and forced vibration of simply-supported Single-walled carbon nanotube is investigated under the moving nanoparticle by considering nonlocal cylindrical shell model. To validate the theoretical results, modal analysis of nanotube is conducted using ANSYS commercial software. Excellent agreement is exhibited between the results of two different methods. Furthermore, the dynam...
متن کامل